微分算子法解三角函数幂函数型微分方程
用 微分算子法解微分方程,可以用简单的方法解决复杂的微分方程。
\begin{align}
y'' + y' = x \cos{x}
\end{align}
写出特解
\begin{align}
&
y^* = \frac{1}{D + D^2} x \cos{x}
&
\end{align}
cos x 转化为指数函数
\begin{align}
&
e^{ix} = \cos{x} + i \sin{x}
&
\end{align}
演算
\begin{align}
&
y^* = \frac{1}{D + D^2} x \cos{x} &\\&
\rightarrow \frac{1}{D+D^2} x e^{ix} &\\&
\text{(此处把虚部添加到表达式了,最终结果要舍弃虚部)}&\\&
= e^{ix} \frac{1}{(D+i)+(D+i)^2} x &\\&
= e^{ix} \frac{1}{i-1 + (2i+1)D + D^2} x
&
\end{align}
\begin{align}
&
&\\&
\text{分母可以提取 i-1 或者乘以 i-1 的倒数,乘法比除法简单,选择乘法} &\\&
\frac{1}{i-1} = \frac{i+1}{(i-1)(i+1)} = -\frac{1}{2} (i+1)
&
\end{align}
\begin{align}
&
y^* \rightarrow &\\&
-\frac{1}{2}(i+1)e^{ix}
\frac{1}{1 - \frac{1}{2}(i+1)(2i+1)D -\frac{1}{2}(i+1)D^2}
x &\\&
=
-\frac{1}{2}(i+1)e^{ix}
\frac{1}{1-\frac{1}{2}(3i -1)D - \frac{1}{2}(i+1)D^2}
x &\\&
&
\end{align}
\begin{align}
&
\text{泰勒展开, 再演算} &\\&
y^* \rightarrow &\\&
-\frac{1}{2}(i+1)e^{ix}
[1 + \frac{1}{2}(3i -1)D + \frac{1}{2}(i+1)D^2] x &\\&
=
-\frac{1}{2}(i+1)e^{ix}
[1 + \frac{1}{2}(3i -1)D] x &\\&
=
-\frac{1}{2}(i+1)e^{ix}
[x + \frac{1}{2}(3i -1)] &\\&
=
-\frac{1}{2}(i+1)(\cos{x} + i\sin{x})[x-\frac{1}{2} + i \frac{3}{2} ] &\\&
=
-\frac{1}{4} (\cos{x} + i\sin{x}) (i+1) (2x -1 + i3) &\\&
=
-\frac{1}{4} (\cos{x} + i\sin{x}) (i 2x -i -3 +2x -1 + i 3) &\\&
=
-\frac{1}{4} (\cos{x} + i\sin{x}) [2x-4 + i (2x+2)] &\\&
=
-\frac{1}{2} (\cos{x} + i\sin{x}) [x-2 + i (x+1)] &\\&
\rightarrow -\frac{1}{2}[\cos{x} (x-2) - \sin{x} (x+1)] &\\&
\text{(舍弃虚部了)}
&
\end{align}
\begin{align}
\text{最终得到:} &\\&
&
y^* = \frac{1}{2} [ (x+1) \sin{x} - (x-2) \cos{x}]
&
\end{align}
\begin{align}
&
\text{验证:} &\\&
y' = \frac{1}{2}[\sin{x} + (x+1)\cos{x} - \cos{x} + (x-2)\sin{x}] &\\&
= \frac{1}{2}[x\cos{x} + (x-1)\sin{x}] &\\&
y'' = \frac{1}{2}[\cos{x} - x\sin{x} + \sin{x} + (x-1)\cos{x}] &\\&
= \frac{1}{2}[x\cos{x} + (1-x)\sin{x}] &\\&
&\\&
\Longrightarrow
y'' + y' = x\cos{x}
&
\end{align}